China Custom Sale Customized Excavator Hydraulic Cylinder-Arm Cylinder, Bucket Cylinder, Boom Cylinder vacuum pump

Product Description

 

Product Description

 

Company Profile

 

IATF16949 and ISO 9001 certified precision CNC machining service company, started in 2006, Infinity provides customers with more than 1 million sensor components every year, such as the hydraulic cylinder, sensor housing, processing connectors, adapters, mounting rods, and mounting plates for flow sensors, pressure sensors, and temperature sensors. Product materials include stainless steel, copper alloy, aluminum alloy, and special alloys. The complex, precise, reliable, and safe manufacturing process ensures the high-quality requirements of customers' products.
With over 3000m2 production workshop, Infinity company provides whole processing from material cutting to inspection & packing and shipment service.

 

Workshop Overview

Equipment List
  Name No. of set Model/Spec. Origin
Infinity Precision Machining main Equipment  CNC Vertical
 Machining Center
2 VJ850,850X500X520/4-Axis ZheJiang
CNC Vertical
 Machining Center
2 Dooson DNM515,1571*540*510 China
CNC Vertical
 Machining Center
1 MAZAK VCN530CL China
Horizontal CNC Lathe 8 OKUMA L250-E ZheJiang
Horizontal CNC Lathe 1 OKUMA L300-M/2.5-Axis ZheJiang
Horizontal CNC Lathe 1 OKUMA L400-E ZheJiang
Horizontal CNC Lathe 3 OKUMA L200EMY ZheJiang
Ultrasonic Cleaning machine 2 KC-6000W China
Automatic Metal Band Sawing
machine
4 GHS4232 China
Flat Grinder 1 M7132B China
Wire Cutter 1 DK7740 China
Pipe bending machine 2   China
Shape mill 1     China
Vibration Burnisher 1 N/A China
Co2 gas-shielded welding 4 FN250 China
Swiss-type CNC machine 1 CSBII 250 ZheJiang
Drilling and tapping machine 4 ZS4116 China

 

Quality Control Process

Infinity Industries, Inc. provides customers with complete inspection services, from first article inspection, to process random inspection, and final inspection, all of which are implemented in strict accordance with the customer's drawings.

 

  Name No. of set Model/Spec. Origin
Inspection Instrument 3D-Measuring System 1 Hexagon,06.08.06 Switzerland
Projector 1 3D Family VME-300 ZheJiang
Contour graph  1 Mitutoyo contracer CV-2100 Japan
Surface rough meter 1 TR210 China
Angle Measurement Instrument 3 0~360° China
Pin Gage variety φ25+/-0.05/φ25.3+/-0.05/φ35+/-0.05 China
R-gage 2 R1~R6.5mm China
Inside Micrometer 5 0-30mm China
Outside Micrometer 5 25~50mm China
Digital Height Guage 20 0~300mm China
Digital Inside Groove Capliers 5 0~150mm China
Digital Vernier Calipers variety 0~200mm/0~300mm China
Mechanical Vernier Calipers variety 0~150mm China
Thread Plug Guage variety 1/2-13UNC,3/4-16UNF,7/16-20UNF,1/4-20UNC-2B/NPSL1/8-27/1/2-14NPT/3/4NPT/M18,26,27X1.5-6h/M4-6h/1/2-14NPSM China
Thread Ring Guage variety M12X0.5-6h/7/8-14UNF,3/4-16UNF,1/2-20UNF,5/8-18UNF,9/8-12UNF,5/8-24UNF,9/16-18UNF-2A/M18X1.5-6g/G1/2A/G1/4-2A/1/4-18NPT/M12X1-6g/M12X1-6h/1/2-14NPT China

Packaging & Logistics

In principle, all legal requirements must be complied with in our packaging and logistics process. These are in particular: 

-    dangerous goods regulation
-    national/international regulations for the treatment of wooden pallets
-    requirements of sea freight, if necessary
-    requirements of air cargo, if necessary
-    packaging directives from our customers
Further applies to:
-    The transport safety always rests with the consignor. Regarding cargo securing the legal regulations apply according to StVO and HGB and the         VDI Xihu (West Lake) Dis.line 2700. 
-    Infinity Company shall treat the goods during storage and shipping in such a way that the agreed-upon quality standard is preserved.
-    The storage at our location shall be made according to the FIFO principle.
-    All packaging materials must be free of attached silicone (e.g. silicone oil) and contain silicone.
Environmental Requirements / Occupational Safety 
No danger to humans or the environment may occur through the delivery of the products. Hazardous materials (dangerous goods) must be labeled in such a way that the dangers are easily recognizable and visible from the outside. 
-    Individual packs / reusable packaging / refillable containers should not exceed an individual weight of 15 kg.
-    The packing height of the loading unit must not exceed a maximum of 1600 mm.
-    The maximum weight of the load unit must not exceed 1200 kg.
-    The maximum dimension of pallets must not exceed 1200 mm x 1000 mm.
-    Individual packs / reusable packaging / returnable containers/cargo units must not be damaged.
-    Loading units must be accessible (at least 100 mm lower ride height).

  /* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic cylinder

What advancements in hydraulic cylinder technology have improved sealing and reliability?

Advancements in hydraulic cylinder technology have continuously contributed to improving sealing and reliability in hydraulic systems. These advancements aim to address common challenges such as leakage, wear, and failure of seals, ensuring optimal performance and longevity. Here are several key advancements that have significantly improved sealing and reliability in hydraulic cylinders:

1. High-Performance Sealing Materials:

- The development of advanced sealing materials has greatly improved the sealing capabilities of hydraulic cylinders. Traditional sealing materials like rubber have been replaced or enhanced with high-performance materials such as polyurethane, PTFE (polytetrafluoroethylene), and various composite materials. These materials offer superior resistance to wear, temperature, and chemical degradation, resulting in improved sealing performance and extended seal life.

2. Enhanced Seal Designs:

- Advancements in seal designs have focused on improving sealing efficiency and reliability. Innovative seal profiles, such as lip seals, wipers, and scrapers, have been developed to optimize fluid retention and prevent contamination. These designs provide better sealing performance, minimizing the risk of fluid leakage and maintaining system integrity. Additionally, improved seal geometries and manufacturing techniques ensure tighter tolerances, reducing the potential for seal failure due to misalignment or extrusion.

3. Integrated Seal and Bearing Systems:

- Hydraulic cylinders now incorporate integrated seal and bearing systems, where the sealing elements also serve as bearing surfaces. This design approach reduces the number of components and potential failure points, improving overall reliability. By integrating seals and bearings, the risk of seal damage or displacement due to excessive loads or misalignment is minimized, resulting in enhanced sealing performance and increased reliability.

4. Advanced Coatings and Surface Treatments:

- The application of advanced coatings and surface treatments to hydraulic cylinder components has significantly improved sealing and reliability. Coatings such as chrome plating or ceramic coatings enhance surface hardness, wear resistance, and corrosion resistance. These surface treatments provide a smoother and more durable surface for seals to operate against, reducing friction and improving sealing performance. Moreover, specialized coatings can also provide self-lubricating properties, reducing the need for additional lubrication and enhancing reliability.

5. Sealing System Monitoring and Diagnostic Technologies:

- The integration of monitoring and diagnostic technologies in hydraulic systems has revolutionized seal performance and reliability. Sensors and monitoring systems can detect and alert operators to potential seal failures or leaks before they escalate. Real-time monitoring of pressure, temperature, and seal performance parameters allows for proactive maintenance and early intervention, preventing costly downtime and ensuring optimal sealing and reliability.

6. Computational Modeling and Simulation:

- Computational modeling and simulation techniques have played a significant role in advancing hydraulic cylinder sealing and reliability. These tools enable engineers to analyze and optimize seal designs, fluid flow dynamics, and contact stresses. By simulating various operating conditions, potential issues such as seal extrusion, wear, or leakage can be identified and mitigated early in the design phase, resulting in improved sealing performance and enhanced reliability.

7. Systematic Maintenance Practices:

- Advances in hydraulic cylinder technology have also emphasized the importance of systematic maintenance practices to ensure sealing and overall system reliability. Regular inspection, lubrication, and replacement of seals, as well as routine system flushing and filtration, help prevent premature seal failure and optimize sealing performance. Implementing preventive maintenance schedules and adhering to recommended service intervals contribute to extended seal life and enhanced reliability.

In summary, advancements in hydraulic cylinder technology have led to significant improvements in sealing and reliability. High-performance sealing materials, enhanced seal designs, integrated seal and bearing systems, advanced coatings and surface treatments, sealing system monitoring and diagnostics, computational modeling and simulation, and systematic maintenance practices have all played key roles in achieving optimal sealing performance and increased reliability. These advancements have resulted in more efficient and dependable hydraulic systems, minimizing leakage, wear, and failure of seals, and ultimately improving the overall performance and longevity of hydraulic cylinders in diverse applications.

hydraulic cylinder

Integration of Hydraulic Cylinders with Equipment Requiring Rapid and Dynamic Movements

Hydraulic cylinders can indeed be integrated with equipment that requires rapid and dynamic movements. While hydraulic systems are generally known for their ability to provide high force and precise control, they can also be designed and optimized for applications that demand fast and dynamic motion. Let's explore how hydraulic cylinders can be integrated with such equipment:

  1. High-Speed Hydraulic Systems: Hydraulic cylinders can be part of high-speed hydraulic systems designed specifically for rapid and dynamic movements. These systems incorporate features such as high-flow valves, optimized hydraulic circuitry, and responsive control systems. By carefully engineering the system components and hydraulic parameters, it is possible to achieve the desired speed and responsiveness, enabling the equipment to perform rapid movements.
  2. Valve Control: The control of hydraulic cylinders plays a crucial role in achieving rapid and dynamic movements. Proportional or servo valves can be used to precisely control the flow of hydraulic fluid into and out of the cylinder. These valves offer fast response times and precise flow control, allowing for rapid acceleration and deceleration of the cylinder's piston. By adjusting the valve settings and optimizing the control algorithms, equipment can be designed to execute dynamic movements with high speed and accuracy.
  3. Optimized Cylinder Design: The design of hydraulic cylinders can be optimized to facilitate rapid and dynamic movements. Lightweight materials, such as aluminum alloys or composite materials, can be used to reduce the moving mass of the cylinder, enabling faster acceleration and deceleration. Additionally, the cylinder's internal components, such as the piston and seals, can be designed for low friction to minimize energy losses and enhance responsiveness. These design optimizations contribute to the overall speed and dynamic performance of the equipment.
  4. Accumulator Integration: Hydraulic accumulators can be integrated into the system to enhance the dynamic capabilities of hydraulic cylinders. Accumulators store pressurized hydraulic fluid, which can be rapidly released to supplement the flow from the pump during high-demand situations. This stored energy can provide an extra boost of power, allowing for faster and more dynamic movements. By strategically sizing and configuring the accumulator, the system can be optimized for the specific rapid and dynamic requirements of the equipment.
  5. System Feedback and Control: To achieve precise and dynamic movements, hydraulic systems can incorporate feedback sensors and advanced control algorithms. Position sensors, such as linear potentiometers or magnetostrictive sensors, provide real-time position feedback of the hydraulic cylinder. This information can be used in closed-loop control systems to maintain precise positioning and execute rapid movements. Advanced control algorithms can optimize the control signals sent to the valves, ensuring smooth and dynamic motion while minimizing overshooting or oscillations.

In summary, hydraulic cylinders can be integrated with equipment that requires rapid and dynamic movements by utilizing high-speed hydraulic systems, employing responsive valve control, optimizing cylinder design, integrating accumulators, and incorporating feedback sensors and advanced control algorithms. These measures enable hydraulic systems to deliver the speed, responsiveness, and precision necessary for equipment operating in dynamic environments. By leveraging the capabilities of hydraulic cylinders, manufacturers can design and integrate systems that meet the requirements of applications demanding rapid and dynamic movements.

hydraulic cylinder

What benefits do hydraulic cylinders offer for tasks requiring heavy lifting or movement?

Hydraulic cylinders offer numerous benefits for tasks that involve heavy lifting or movement. Their unique design and characteristics make them well-suited for applications that require substantial force, precise control, and reliable operation. Here are the detailed benefits that hydraulic cylinders provide for such tasks:

1. High Force Generation:

- Hydraulic cylinders are capable of generating significant amounts of force. By utilizing hydraulic pressure, which can be easily amplified, hydraulic cylinders can exert substantial force to lift and move heavy loads. The force output of a hydraulic cylinder is directly proportional to the hydraulic pressure and the surface area of the piston. This high force capability makes hydraulic cylinders ideal for tasks that involve heavy lifting, pushing, or pulling.

2. Precise Control:

- Hydraulic cylinders offer precise control over the force and motion they generate. By regulating the flow of hydraulic fluid into the cylinder, the speed, direction, and position of the cylinder's movement can be accurately controlled. This level of control is crucial for tasks that require precise positioning, delicate movements, or synchronization of multiple cylinders. It enables operators to perform operations with accuracy and minimize the risk of damage or accidents.

3. Safety:

- Hydraulic cylinders are designed with safety features to ensure the protection of both personnel and equipment. They incorporate overload protection mechanisms, such as relief valves, that prevent excessive force or pressure from damaging the system. Additionally, hydraulic cylinders allow for controlled and gradual movements, reducing the risk of sudden and uncontrolled motions that could pose safety hazards during heavy lifting or movement tasks.

4. Versatility and Adaptability:

- Hydraulic cylinders are versatile components that can be adapted to meet specific requirements. They can be customized based on factors such as force capacity, stroke length, speed, and mounting options, allowing them to be integrated into various types of machinery. This versatility makes hydraulic cylinders suitable for a wide range of applications, including construction, material handling, mining, agriculture, and more.

5. Smooth and Controlled Operation:

- Hydraulic cylinders provide smooth and controlled operation, ensuring efficient and reliable performance during heavy lifting or movement tasks. The hydraulic fluid acts as a cushioning medium, which helps dampen shocks and vibrations, resulting in smoother and quieter operation. This controlled operation also reduces the risk of damage to the load being lifted or the surrounding equipment.

6. Compact Design:

- Hydraulic cylinders offer a high power-to-size ratio, allowing for compact machinery design. Their relatively small size, compared to the forces they can generate, makes them suitable for applications where space is limited or weight restrictions apply. This compact design enables the integration of hydraulic cylinders into different types of equipment without compromising performance or efficiency.

7. Durability and Reliability:

- Hydraulic cylinders are built to withstand rigorous operating conditions and provide long-term reliability. They are constructed with robust materials, precise machining, and effective sealing systems to ensure durability and prevent fluid leakage. Hydraulic cylinders can withstand high pressures, heavy loads, and continuous use, making them suitable for demanding tasks involving heavy lifting or movement.

8. Energy Efficiency:

- Hydraulic cylinders contribute to energy efficiency in tasks requiring heavy lifting or movement. Hydraulic systems allow for the transfer of power over long distances without significant power losses. Additionally, hydraulic cylinders can incorporate energy-saving features such as load-sensing technology and regenerative circuits, which reduce energy consumption by optimizing the use of hydraulic fluid.

In summary, hydraulic cylinders offer several benefits for tasks that involve heavy lifting or movement. They provide high force generation, precise control, safety features, versatility, smooth operation, compact design, durability, and energy efficiency. These advantages make hydraulic cylinders indispensable components in various industries where heavy loads need to be lifted, pushed, or moved with accuracy and reliability.

hydraulic_cylinderhydraulic_cylinder
editor by Dream 2024-11-28

Related Posts